metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[triaqua(4,4'-bipyridine N,N'-dioxide- κO)dichloridocerium(III)]- μ_2 -4,4'-bipyridine N,N'-dioxide- $\kappa^2 O$:O'] chloride monohydrate]

Da-Qiang Yuan, Fen-Yan Lian and Mao-Chun Hong*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: hmc@fjirsm.ac.cn

Received 11 April 2007; accepted 17 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.033; wR factor = 0.083; data-to-parameter ratio = 17.5.

In the title compound, $[CeCl_2(C_{10}H_8N_2O_2)_2(H_2O)_3]Cl\cdot H_2O$, each Ce^{III} atom is coordinated by six O atoms [Ce-O = 2.454 (3)-2.454 (3) Å] and two chloride ions [Ce-Cl = 2.8277 (9) and 2.8721 (9) Å] in a distorted tetragonal-antiprismatic geometry. One of the 4,4'-bipyridine *N*,N'-dioxide ligands acts as a bridging ligand while the other acts a terminal ligand, leading to the formation of a linear polymeric structure. In the crystal structure, adjacent polymeric chains are cross-linked by $O-H\cdots O$ and $O-H\cdots Cl$ hydrogen bonds, forming a three-dimensional network.

Related literature

For related literature, see: Hill *et al.* (2004); Kitagawa & Kitaura (2004); Long *et al.* (2000, 2001, 2002, 2004); Ma *et al.* (2005); Yaghi *et al.* (2003).

Experimental

Crystal data	
$[CeCl_2(C_{10}H_8N_2O_2)_2(H_2O)_3]$ -	c = 14.7861 (3) Å
Cl·H ₂ O	$\alpha = 83.362 \ (5)^{\circ}$
$M_r = 694.90$	$\beta = 73.027 \ (4)^{\circ}$
Triclinic, P1	$\gamma = 86.190 \ (6)^{\circ}$
a = 8.6677 (1) Å	V = 1272.63 (6) Å ³
b = 10.4584 (3) Å	Z = 2

Mo $K\alpha$ radiation
$\mu = 2.16 \text{ mm}^{-1}$

Data collection

Rigaku Mercury CCD	9756 measured reflections
diffractometer	5698 independent reflections
Absorption correction: multi-scan	5315 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku/MSC,	$R_{\rm int} = 0.019$
2004)	
$T_{\min} = 0.444, T_{\max} = 0.813$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ 325 parameters $wR(F^2) = 0.084$ H-atom parameters constrainedS = 1.06 $\Delta \rho_{max} = 1.31 \text{ e Å}^{-3}$ 5698 reflections $\Delta \rho_{min} = -1.13 \text{ e Å}^{-3}$

T = 293 (2) K 0.45 × 0.22 × 0.10 mm

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O5−H5A···O8	0.85	2.06	2.896 (3)	170
$O5-H5B\cdots O3^{i}$	0.85	1.93	2.763 (4)	167
$O6-H6A\cdots O2^{ii}$	0.85	1.90	2.716 (4)	161
$O6 - H6B \cdot \cdot \cdot Cl2^{iii}$	0.85	2.50	3.214 (3)	142
$O7 - H7A \cdots O3^{iv}$	0.85	1.95	2.778 (4)	164
$O7 - H7B \cdots Cl3$	0.85	2.17	3.014 (3)	176
$O8 - H8B \cdots Cl3^{v}$	0.85	2.32	3.059 (2)	145
Symmetry codes:	(i) $r = 1 v$	+1 7: (ii)	-r - 1 - v + 2	-7 + 2 (iii)

Symmetry codes: (1) x - 1, y + 1, z; (n) -x - 1, -y + 2, -z + 2; (n) -x, -y + 1, -z + 2; (iv) -x + 1, -y, -z + 1; (v) -x, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2004); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of China, the Natural Science Funds and the Young Scientist Funds of Fujian Province (No. 2006 F3130).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2363).

References

- Hill, R. J., Long, D. L., Turvey, M. S., Blake, A. J., Champness, N. R., Hubberstey, P., Wilson, C. & Schröer, M. (2004). *Chem. Commun.* pp. 1792– 1793.
- Kitagawa, S. & Kitaura, R. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.
- Long, D. L., Blake, A. J., Champness, N. R. & Schröder, M. (2000). Chem. Commun. pp. 1369–1370.
- Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2001). Angew. Chem. Int. Ed. 40, 2443–2447.
- Long, D. L., Blake, A. J., Champness, N. R., Wilson, C. & Schröder, M. (2002). *Chem. Eur. J.* pp. 2026–2033.
- Long, D. L., Hill, R. J., Blake, A. J., Champness, N. R., Hubberstey, P., Proserpio, D. M., Wilson, C. & Schröder, M. (2004). *Angew. Chem. Int. Ed.* 43, 1851–1854.
- Ma, S. L., Qi, C. M., Guo, Q. L. & Zhao, M. X. (2005). J. Mol. Struct. 738, 99– 104.
- Rigaku/MSC (2004). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K. & Eddaoudi, M. (2003). Nature (London), 423, 705–714.

Acta Cryst. (2007). E63, m1430 [doi:10.1107/S1600536807019010]

catena-Poly[[[triaqua(4,4'-bipyridine N,N'-dioxide- κO)dichloridocerium(III)]- μ_2 -4,4'-bipyridine N,N'-dioxide- $\kappa^2 O:O'$] chloride monohydrate]

D.-Q. Yuan, F.-Y. Lian and M.-C. Hong

Comment

Recently, inorganic-organic coordination compounds attracted considerable attention due to their fascinating structure and potential applications as functional materials (Kitagawa & Kitaura, 2004; Yaghi *et al.*, 2003). Multidentate O-donor ligands have been employed extensively as organic spacers in the construction of extended networks. 4,4'-Bipyridine N,N'-dioxide (*L*), a typical bridge ligand, can coordinate to lanthanide metal ions in five possible modes, and generate some predicted, controlled structural frameworks, including one-dimensional chains, two-dimensional layer, and three-dimensional network (Hill *et al.*, 2004; Long *et al.*, 2000, 2001, 2002, 2004; Ma *et al.*, 2005). We report here the synthesis and crystal structure of the title compound, (I).

As illustrated in Fig. 1, in compound (I), each Ce^{III} atom is coordinated by six O atoms [Ce—O = 2.454 (3)–2.545 (3) Å] from three *L* ligands and three water molecules, and two chloride ions [Ce—Cl = 2.8277 (9) and 2.8721 (9) Å] in a distorted tetragonal antiprism geometry. The interesting feature of (I) is that the asymmetric unit contains two *L* ligands, which exhibit two different coordination modes. One of the *L* acts as a bridging ligand, linking two Ce^{III} ions, with a Ce···Ceⁱ distance of 13.1324 (8) Å [symmetry code: (i) x + 1, y - 1, z], and the other acts a terminal ligand. As a result of this coordination a linear polymeric chain is formed (Fig. 2), similar to that in *catena*-[bis(μ_2 -4,4'-bipyridine *N*,*N*'-dioxide)-tris (nitrato)-terbium(III)] (Long *et al.*, 2002) but different from the wave-like chain in *catena*-[(μ_2 -4,4'-bipyridine *N*,*N*'-dioxide)-tris (nitrato)-terbium(III)] (Long *et al.*, 2002). The pyridine rings in the *L* ligand are not coplanar; the dihedral angle between the N1- and N2-pyridine rings is 14.2 (2)° and that between the N3- and N4-pyridine rings is 10.5 (2)°.

In the polymeric chain, weak face-to face π - π interactions are observed between the adjacent bridging and terminal *L* ligands, with $Cg_3 \cdots Cg_2^i$ and $Cg_4 \cdots Cg_1^i$ distances of 3.596 (2) and 3.888 (2) Å, respectively (Cg_1, Cg_2, Cg_3 and Cg_4 denote the centroids of the N1/C1—C5, N2/C6—C10, N3/C11—C15 and N4/C16—C20 rings, respectively). The neighboring chains are cross-linked by O—H···O and O—H···Cl hydrogen bonds, involving three coordinated water molecules, one lattice water molecule, one uncoordinated chloride ion and the uncoordinated O atom of the *L* ligand (Table 1), forming a three-dimensional hydrogen-bonded network, as shown in Fig.3.

Experimental

A mixture of $CeCl_3 \cdot 6H_2O(0.20 \text{ mmol})$, 4,4'-bipyridine N,N'-dioxide (0.40 mmol) and water (10 ml) was stirred at *ca* 323 K for 3 h and then filtered. The filtrate was kept at room temperature and yellow crystals of the title compound (yield 53%, based on Ce) were obtained after several days.

Refinement

The water H atoms were located in difference Fourier maps, and refined with O—H distances restrained at 0.85 Å and $U_{iso} = 1.2U_{eq}(O)$. The remaining H atoms were positioned geometrically, with C—H = 0.93 Å, and were constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$

Figures

Fig. 1. Coordination environment of the Cerium atom in (I). Displacement ellipsoids are drawn at the 35% probability level. [Symmetry code: (i) x + 1, y - 1, z.]

Fig. 2. Part of the polymeric chain of (I). H atoms have been omitted for clarity. [Symmetry code: (i) x + 1, y - 1, z.]

Fig. 3. Part of the hydrogen-bonded (dashed lines) network in (I). [Symmetry codes: (i) x + 1, y - 1, z; (ii) x - 1, y + 1, z; (iii) -x - 1, -y + 2, -z + 2; (iv) -x, -y + 1, -z + 2; (v) -x + 1, -y, -z + 1; (vi) -x, -y + 1, -z + 1.]

catena-Poly[[[triaqua(4,4'-bipyridine N,N'-dioxide- κO)dichloridocerium(III)]- μ_2 -4,4'-bipyridine N,N'-dioxide- $\kappa^2 O$:O'] chloride monohydrate]

Crystal data	
$[CeCl_2(C_{10}H_8N_2O_2)_2(H_2O)_3]Cl\cdot H_2O)$	Z = 2
$M_r = 694.90$	$F_{000} = 690$
Triclinic, PT	$D_{\rm x} = 1.813 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 8.6677 (1) Å	Cell parameters from 3563 reflections
b = 10.4584 (3) Å	$\theta = 2.3 - 27.5^{\circ}$
c = 14.7861 (3) Å	$\mu = 2.16 \text{ mm}^{-1}$
$\alpha = 83.362 \ (5)^{\circ}$	T = 293 (2) K
$\beta = 73.027 \ (4)^{\circ}$	Prism, orange
$\gamma = 86.190 \ (6)^{\circ}$	$0.45 \times 0.22 \times 0.10 \text{ mm}$
V = 1272.63 (6) Å ³	

Data collection

Rigaku Mercury CCD diffractometer	5698 independent reflections
Radiation source: fine-focus sealed tube	5315 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$

T = 293(2) K	$\theta_{\min} = 2.3^{\circ}$
ω scans	$h = -11 \rightarrow 10$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2004)	$k = -13 \rightarrow 9$
$T_{\min} = 0.444, \ T_{\max} = 0.813$	$l = -19 \rightarrow 19$
9756 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.084$	$w = 1/[\sigma^2(F_o^2) + (0.0423P)^2 + 2.1096P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
5698 reflections	$\Delta \rho_{max} = 1.31 \text{ e} \text{ Å}^{-3}$
325 parameters	$\Delta \rho_{min} = -1.13 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ce1	0.00594 (2)	0.441087 (16)	0.796133 (12)	0.01936 (7)
Cl1	-0.11177 (11)	0.19676 (8)	0.88064 (7)	0.03122 (19)
C12	0.09043 (12)	0.67876 (8)	0.84625 (6)	0.03285 (19)
C13	0.10399 (16)	0.85283 (13)	0.58040 (9)	0.0563 (3)
01	-0.2380 (4)	0.5682 (3)	0.7862 (2)	0.0387 (7)
O2	-0.8044 (3)	1.3811 (2)	0.8983 (2)	0.0350 (6)
O3	0.7408 (4)	-0.5185 (3)	0.5485 (2)	0.0378 (6)
O4	0.2428 (3)	0.3201 (3)	0.6970 (2)	0.0373 (6)
O5	-0.1189 (4)	0.3598 (3)	0.6824 (2)	0.0464 (8)
H5A	-0.0935	0.2845	0.6653	0.056*
H5B	-0.1466	0.3972	0.6351	0.056*
O6	-0.1698 (3)	0.4586 (3)	0.96565 (18)	0.0332 (6)

H6A	-0.1812	0.5220	0.9984	0.040*
H6B	-0.1465	0.3917	0.9983	0.040*
07	0.1258 (4)	0.5682 (2)	0.63959 (18)	0.0385 (7)
H7B	0.1148	0.6482	0.6236	0.046*
H7A	0.1731	0.5393	0.5867	0.046*
08	-0.0742 (3)	0.10277 (19)	0.62206 (14)	0.0154 (4)
H8A	-0.0028	0.0725	0.6485	0.018*
H8B	-0.0526	0.0870	0.5645	0.018*
N1	-0.3048 (4)	0.6797 (3)	0.8165 (2)	0.0291 (7)
N2	-0.7157 (4)	1.2713 (3)	0.8993 (2)	0.0271 (6)
N3	0.3114 (4)	0.2040 (3)	0.6792 (2)	0.0259 (6)
N4	0.6763 (4)	-0.4033 (3)	0.5714 (2)	0.0284 (6)
C1	-0.2279(5)	0.7893 (4)	0.7815 (3)	0.0357 (9)
H1	-0.1242	0.7867	0.7399	0.043*
C2	-0.4516 (5)	0.6817 (4)	0.8794 (3)	0.0416 (10)
H2	-0.5020	0.6048	0.9059	0.050*
C3	-0.3012(5)	0.9058 (4)	0.8068 (3)	0.0335 (8)
Н3	-0.2455	0.9810	0.7825	0.040*
C4	-0.5281(5)	0.7971 (4)	0.9050 (3)	0.0394 (10)
H4	-0.6304	0.7972	0.9483	0.047*
C5	-0.4557 (4)	0.9133 (3)	0.8673 (2)	0.0236 (7)
C6	-0.5413 (4)	1.0395 (3)	0.8856 (2)	0.0232 (7)
C7	-0.4733 (4)	1.1541 (3)	0.8356 (3)	0.0299 (8)
H7	-0.3675	1.1530	0.7966	0.036*
C8	-0.6954 (4)	1.0496 (4)	0.9479 (3)	0.0297 (8)
H8	-0.7416	0.9769	0.9859	0.036*
С9	-0.5622(5)	1.2680 (4)	0.8442 (3)	0.0320 (8)
Н9	-0.5157	1.3437	0.8114	0.038*
C10	-0.7813 (5)	1.1658 (4)	0.9543 (3)	0.0313 (8)
H10	-0.8841	1.1712	0.9966	0.038*
C11	0.4609(5)	0.1976 (4)	0.6179 (3)	0.0304 (8)
H11	0.5140	0.2728	0.5895	0.037*
C12	0.2344 (4)	0.0960 (3)	0.7219 (3)	0.0282 (7)
H12	0.1312	0.1022	0.7637	0.034*
C13	0.5353 (4)	0.0786 (3)	0.5975 (3)	0.0290 (7)
H13	0.6372	0.0748	0.5540	0.035*
C14	0.3065 (4)	-0.0234(4)	0.7045 (3)	0.0276 (7)
H14	0.2523	-0.0971	0.7355	0.033*
C15	0.4602 (4)	-0.0351(3)	0.6406 (2)	0.0231 (7)
C16	0.5370 (4)	-0.1637 (3)	0.6185 (2)	0.0246 (7)
C17	0.6976 (5)	-0.1775 (4)	0.5648 (3)	0.0343 (8)
H17	0.7603	-0.1053	0.5437	0.041*
C18	0.4512 (5)	-0.2754(4)	0.6482 (3)	0.0338 (8)
H18	0.3443	-0.2705	0.6851	0.041*
C19	0.7645 (5)	-0.2979 (4)	0.5423 (3)	0.0361 (9)
H19	0.8719	-0.3057	0.5067	0.043*
C20	0.5208 (5)	-0.3933(4)	0.6241 (3)	0.0368 (9)
H20	0.4602	-0.4668	0.6443	0.044*

	.1	
Atomic displacement parameters	$s(A^2)$)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cel	0.02181 (11)	0.01415 (10)	0.02068 (10)	0.00357 (7)	-0.00417 (7)	-0.00329 (6)
Cl1	0.0306 (4)	0.0229 (4)	0.0348 (4)	-0.0044 (3)	-0.0010 (4)	-0.0006 (3)
Cl2	0.0440 (5)	0.0219 (4)	0.0313 (4)	-0.0052 (4)	-0.0082 (4)	-0.0018 (3)
C13	0.0570 (7)	0.0563 (7)	0.0524 (7)	-0.0063 (6)	-0.0124 (6)	0.0020 (6)
01	0.0418 (16)	0.0312 (14)	0.0461 (16)	0.0220 (12)	-0.0178 (13)	-0.0154 (12)
O2	0.0448 (16)	0.0252 (13)	0.0402 (15)	0.0187 (12)	-0.0205 (13)	-0.0144 (11)
O3	0.0529 (17)	0.0228 (13)	0.0358 (14)	0.0162 (12)	-0.0107 (13)	-0.0102 (11)
O4	0.0410 (16)	0.0239 (13)	0.0414 (15)	0.0138 (12)	-0.0041 (12)	-0.0098 (11)
05	0.078 (2)	0.0238 (13)	0.0532 (18)	0.0115 (14)	-0.0437 (18)	-0.0115 (13)
O6	0.0428 (15)	0.0281 (13)	0.0260 (13)	0.0021 (11)	-0.0042 (11)	-0.0084 (10)
07	0.0617 (19)	0.0198 (12)	0.0246 (13)	0.0018 (12)	0.0009 (12)	-0.0012 (10)
08	0.0277 (11)	0.0113 (9)	0.0100 (9)	-0.0060 (8)	-0.0094 (8)	0.0005 (7)
N1	0.0283 (15)	0.0276 (15)	0.0313 (15)	0.0147 (12)	-0.0096 (13)	-0.0084 (12)
N2	0.0329 (16)	0.0223 (14)	0.0302 (15)	0.0113 (12)	-0.0149 (13)	-0.0112 (12)
N3	0.0283 (15)	0.0237 (14)	0.0255 (14)	0.0099 (12)	-0.0070 (12)	-0.0096 (11)
N4	0.0368 (17)	0.0217 (14)	0.0265 (14)	0.0096 (12)	-0.0098 (13)	-0.0063 (12)
C1	0.0287 (19)	0.033 (2)	0.035 (2)	0.0093 (16)	0.0029 (16)	0.0026 (16)
C2	0.033 (2)	0.0256 (19)	0.057 (3)	-0.0006 (16)	0.0026 (19)	-0.0050 (18)
C3	0.0281 (19)	0.0261 (18)	0.038 (2)	0.0042 (15)	0.0001 (16)	0.0053 (15)
C4	0.0263 (19)	0.0262 (19)	0.055 (3)	0.0031 (15)	0.0064 (17)	-0.0089 (17)
C5	0.0246 (16)	0.0227 (16)	0.0233 (16)	0.0061 (13)	-0.0077 (13)	-0.0023 (13)
C6	0.0228 (16)	0.0239 (16)	0.0229 (15)	0.0047 (13)	-0.0074 (13)	-0.0036 (13)
C7	0.0231 (17)	0.0258 (18)	0.040 (2)	0.0023 (14)	-0.0086 (15)	-0.0034 (15)
C8	0.0294 (18)	0.0284 (18)	0.0264 (17)	0.0065 (15)	-0.0031 (14)	0.0006 (14)
C9	0.033 (2)	0.0234 (17)	0.041 (2)	-0.0006 (15)	-0.0128 (17)	-0.0020 (15)
C10	0.0299 (19)	0.035 (2)	0.0257 (17)	0.0105 (16)	-0.0047 (14)	-0.0058 (15)
C11	0.0308 (19)	0.0241 (17)	0.0305 (18)	0.0030 (14)	-0.0012 (15)	-0.0013 (14)
C12	0.0239 (17)	0.0266 (17)	0.0324 (18)	0.0036 (14)	-0.0037 (14)	-0.0104 (14)
C13	0.0246 (17)	0.0265 (17)	0.0313 (18)	0.0064 (14)	-0.0009 (14)	-0.0069 (14)
C14	0.0261 (17)	0.0249 (17)	0.0308 (18)	0.0006 (14)	-0.0053 (14)	-0.0067 (14)
C15	0.0228 (16)	0.0217 (16)	0.0255 (16)	0.0037 (13)	-0.0075 (13)	-0.0069 (13)
C16	0.0260 (17)	0.0212 (16)	0.0267 (16)	0.0038 (13)	-0.0072 (14)	-0.0065 (13)
C17	0.0250 (18)	0.0266 (18)	0.049 (2)	0.0024 (15)	-0.0045 (16)	-0.0122 (17)
C18	0.0271 (19)	0.0249 (18)	0.042 (2)	0.0018 (15)	0.0017 (16)	-0.0047 (16)
C19	0.0257 (18)	0.031 (2)	0.048 (2)	0.0072 (15)	-0.0038 (17)	-0.0124 (17)
C20	0.038 (2)	0.0220 (18)	0.044 (2)	0.0005 (16)	-0.0013 (17)	-0.0039 (16)
Geometric pa	arameters (Å. °)					
P -	(, , ,					

Ce1—O1	2.454 (3)	С2—Н2	0.93
Ce1—O5	2.498 (3)	C3—C5	1.380 (5)
Ce1—O7	2.504 (3)	С3—Н3	0.93
Ce1—O4	2.508 (3)	C4—C5	1.386 (5)
Ce1—O2 ⁱ	2.544 (3)	C4—H4	0.93

Ce1—O6	2.545 (3)	C5—C6	1.484 (4)
Ce1—Cl1	2.8277 (9)	C6—C8	1.389 (5)
Ce1—Cl2	2.8721 (9)	C6—C7	1.402 (5)
O1—N1	1.332 (4)	С7—С9	1.373 (5)
O2—N2	1.340 (4)	С7—Н7	0.93
O3—N4	1.332 (4)	C8—C10	1.380 (5)
O4—N3	1.336 (4)	С8—Н8	0.93
O5—H5A	0.85	С9—Н9	0.93
O5—H5B	0.85	C10—H10	0.93
O6—H6A	0.85	C11—C13	1.387 (5)
O6—H6B	0.85	C11—H11	0.93
O7—H7B	0.85	C12—C14	1.377 (5)
07—Н7А	0.85	C12—H12	0.93
O8—H8A	0.85	C13—C15	1.389 (5)
O8—H8B	0.85	С13—Н13	0.93
N1—C1	1.337 (5)	C14—C15	1.397 (5)
N1—C2	1.340 (5)	C14—H14	0.93
N2—C9	1.343 (5)	C15—C16	1.488 (4)
N2—C10	1.344 (5)	C16—C18	1.384 (5)
N3—C12	1.345 (5)	C16—C17	1.395 (5)
N3—C11	1.350 (5)	C17—C19	1.385 (5)
N4—C19	1.339 (5)	С17—Н17	0.93
N4—C20	1.350 (5)	C18—C20	1.374 (5)
C1—C3	1.375 (5)	C18—H18	0.93
C1—H1	0.93	С19—Н19	0.93
C2—C4	1.375 (5)	C20—H20	0.93
O1—Ce1—O5	68.28 (9)	N1—C2—H2	119.9
01—Ce1—O7	82.33 (10)	C4—C2—H2	119.9
05—Ce1—07	74.47 (10)	C1—C3—C5	121.3 (4)
01—Ce1—O4	141 78 (10)	С1—С3—Н3	1193
05—Ce1—O4	79 52 (10)	С5—С3—Н3	119.3
07—Ce1—O4	69.30 (9)	C2-C4-C5	121.3 (4)
$O1 Ca1 O2^{i}$	144 12 (9)	C2—C4—H4	119.4
	111.12(9)		110.4
05-Ce1-02	144.07 (8)	C5—C4—H4	119.4
$O7$ —Ce1— $O2^1$	115.80 (10)	C3—C5—C4	116.3 (3)
O4—Ce1—O2 ⁱ	73.45 (9)	C3—C5—C6	121.1 (3)
O1—Ce1—O6	72.90 (9)	C4—C5—C6	122.5 (3)
O5—Ce1—O6	117.92 (10)	C8—C6—C7	116.8 (3)
O7—Ce1—O6	143.72 (8)	C8—C6—C5	122.1 (3)
O4—Ce1—O6	143.38 (9)	C7—C6—C5	120.9 (3)
O2 ⁱ —Ce1—O6	75.39 (9)	C9—C7—C6	120.2 (3)
O1—Ce1—Cl1	103.72 (8)	С9—С7—Н7	119.9
O5—Ce1—Cl1	74.42 (8)	С6—С7—Н7	119.9
O7—Ce1—Cl1	143.21 (6)	C10—C8—C6	121.1 (4)
O4—Ce1—Cl1	86.13 (7)	С10—С8—Н8	119.5
Ω^{2i} —Ce1—Cl1	80.49 (7)	С6—С8—Н8	119.5
O_6 —Ce1—Cl1	70 10 (6)	N2	120 8 (4)

01—Ce1—Cl2	82.29 (7)	N2—C9—H9	119.6
O5—Ce1—Cl2	140.34 (7)	С7—С9—Н9	119.6
O7—Ce1—Cl2	75.80 (7)	N2—C10—C8	119.8 (3)
O4—Ce1—Cl2	113.29 (7)	N2—C10—H10	120.1
O2 ⁱ —Ce1—Cl2	73.59 (6)	C8—C10—H10	120.1
O6—Ce1—Cl2	74.96 (6)	N3—C11—C13	119.8 (3)
Cl1—Ce1—Cl2	140.64 (3)	N3—C11—H11	120.1
N1—O1—Ce1	134.5 (2)	C13—C11—H11	120.1
N2—O2—Ce1 ⁱⁱ	125.79 (19)	N3—C12—C14	120.7 (3)
N3-04-Ce1	145.4 (2)	N3—C12—H12	119.6
Ce1—O5—H5A	119.7	C14—C12—H12	119.6
Ce1—O5—H5B	132.0	C11—C13—C15	121.2 (3)
Н5А—О5—Н5В	101.3	C11—C13—H13	119.4
Ce1—O6—H6A	128.0	С15—С13—Н13	119.4
Ce1—O6—H6B	105.8	C12—C14—C15	120.7 (3)
Н6А—О6—Н6В	108.1	C12—C14—H14	119.7
Ce1—O7—H7B	129.1	C15-C14-H14	119.7
Ce1—O7—H7A	127.5	C13 - C15 - C14	116.8 (3)
H7B-07-H7A	102.5	C13 - C15 - C16	122.0(3)
H8A = 08 = H8B	113.1	C14 - C15 - C16	122.0(3) 121.2(3)
01-N1-C1	120.0 (3)	C_{18} C_{16} C_{17}	1166(3)
01 - N1 - C2	1196(3)	C18 - C16 - C15	1216(3)
C1 - N1 - C2	120.4(3)	C_{17} $-C_{16}$ $-C_{15}$	121.0(3)
02 - N2 - C9	120.4(3)	C19 - C17 - C16	121.6(3) 120.6(4)
02 N2 C10	119.2(3) 120.0(3)	C19 - C17 - H17	119.7
$C_{2} = N_{2} = C_{10}$	120.0(3) 120.8(3)	C16-C17-H17	119.7
$04 - N_{3} - C_{12}$	120.0(3)	$C_{10} = C_{10} = C_{16}$	119.7 121.4(4)
$04 N_3 C_{11}$	120.9(3)	$C_{20} = C_{18} = C_{10}$	121.4 (4)
$C_{12} = N_3 = C_{11}$	110.5(3)	C16 C18 H18	119.5
C_{12} NJ C_{19}	120.8(3) 120.5(3)	N4 C19 C17	119.5
03 N4 C20	120.3(3)	N4 C19 H19	120.8 (4)
$C_{10} N_{4} C_{20}$	119.4(3)	14 - 19 - 119	119.0
C19 - 1N4 - C20	120.1(3)	C1/-C19-H19	119.0
NI_CI_H1	120.4 (3)	N4 C20 H20	120.3 (4)
$N_1 = C_1 = H_1$	119.0	14 - 20 - 120	119.7
N1_C2_C4	119.8	C13-C20-1120	117./
	120.2 (4)		A ((E)
05-Cel-01-NI	-168.3(4)	$C_8 = C_6 = C_7 = C_9$	-4.6(5)
0/-cel-0l-Nl	-92.1(3)	$C_{5} = C_{6} = C_{7} = C_{9}$	1/1.5 (3)
U4—CeI—OI—NI	-133.7(3)		4.8 (5)
$O2^{I}$ —Ce1—O1—N1	32.2 (4)	C5—C6—C8—C10	-171.2(3)
06—Ce1—O1—N1	61.1 (3)	O2—N2—C9—C7	-173.0 (3)
Cl1—Ce1—O1—N1	124.9 (3)	C10—N2—C9—C7	6.3 (5)
Cl2—Ce1—O1—N1	-15.5 (3)	C6—C7—C9—N2	-0.8 (6)
O1—Ce1—O4—N3	-108.8 (4)	O2—N2—C10—C8	173.3 (3)
O5—Ce1—O4—N3	-76.3 (4)	C9—N2—C10—C8	-6.0 (5)
O7—Ce1—O4—N3	-153.5 (4)	C6—C8—C10—N2	0.3 (6)
O2 ⁱ —Ce1—O4—N3	79.8 (4)	O4—N3—C11—C13	-179.7 (3)
O6—Ce1—O4—N3	47.0 (5)	C12—N3—C11—C13	1.1 (5)

Cl1—Ce1—O4—N3	-1.5 (4)	O4—N3—C12—C14	-179.0 (3)	
Cl2—Ce1—O4—N3	143.1 (4)	C11—N3—C12—C14	0.2 (5)	
Ce1-01-N1-C1	64.5 (5)	N3—C11—C13—C15	-1.6 (6)	
Ce1—O1—N1—C2	-117.8 (4)	N3-C12-C14-C15	-1.1 (5)	
Ce1 ⁱⁱ —O2—N2—C9	94.6 (4)	C11—C13—C15—C14	0.7 (5)	
Ce1 ⁱⁱ —O2—N2—C10	-84.7 (4)	C11—C13—C15—C16	179.1 (3)	
Ce1—O4—N3—C12	5.9 (6)	C12-C14-C15-C13	0.6 (5)	
Ce1—O4—N3—C11	-173.3 (3)	C12-C14-C15-C16	-177.8 (3)	
O1—N1—C1—C3	175.0 (4)	C13-C15-C16-C18	-168.2 (4)	
C2—N1—C1—C3	-2.7 (6)	C14-C15-C16-C18	10.2 (5)	
O1—N1—C2—C4	-174.3 (4)	C13-C15-C16-C17	10.0 (5)	
C1—N1—C2—C4	3.4 (7)	C14—C15—C16—C17	-171.7 (3)	
N1—C1—C3—C5	-0.9 (6)	C18—C16—C17—C19	0.6 (6)	
N1-C2-C4-C5	-0.6 (7)	C15—C16—C17—C19	-177.7 (4)	
C1—C3—C5—C4	3.5 (6)	C17—C16—C18—C20	-1.1 (6)	
C1—C3—C5—C6	-172.9 (4)	C15-C16-C18-C20	177.2 (4)	
C2—C4—C5—C3	-2.8 (6)	O3—N4—C19—C17	179.0 (4)	
C2—C4—C5—C6	173.5 (4)	C20-N4-C19-C17	-0.7 (6)	
C3—C5—C6—C8	-178.5 (3)	C16-C17-C19-N4	0.3 (6)	
C4—C5—C6—C8	5.3 (5)	O3—N4—C20—C18	-179.5 (4)	
C3—C5—C6—C7	5.6 (5)	C19—N4—C20—C18	0.2 (6)	
C4—C5—C6—C7	-170.5 (4)	C16-C18-C20-N4	0.7 (7)	
Symmetry codes: (i) $x+1$, $y-1$, z ; (ii) $x-1$, $y+1$, z .				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O5—H5A…O8	0.85	2.06	2.896 (3)	170
O5—H5B···O3 ⁱⁱ	0.85	1.93	2.763 (4)	167
O6—H6A···O2 ⁱⁱⁱ	0.85	1.90	2.716 (4)	161
O6—H6B···Cl2 ^{iv}	0.85	2.50	3.214 (3)	142
O7—H7A···O3 ^v	0.85	1.95	2.778 (4)	164
O7—H7B…Cl3	0.85	2.17	3.014 (3)	176
O8—H8B…Cl3 ^{vi}	0.85	2.32	3.059 (2)	145
Symmetry codes: (ii) $x-1$, $y+1$, z ; (iii) $-x-1$, $-y+2$, $-z+2$; (iv) $-x$, $-y+1$, $-z+2$; (v) $-x+1$, $-y$, $-z+1$; (vi) $-x$, $-y+1$, $-z+1$.				

Fig. 1

Fig. 2

Fig. 3